Задача №11 Разделить по справедливости.
Трое крестьян: Иван, Петр и Николай - за выполненную работу получили мешок зерна. На беду под рукой не оказалось мерки и пришлось делить зерно на глазок. Старший среди крестьян - Иван - рассыпал зерно на три кучи, как он считал, поровну:
- Первую кучу возьми ты, Петр, вторая достанется Николаю, а третья мне.
- Я не согласен на это, - возразил Николай, - моя куча зерна ведь самая маленькая.
Поспорили крестьяне. Чуть до ссоры не дошло. Пересыпают зерно из одной кучи в другую, из другой в третью и никак к согласию не придут, обязательно кто-нибудь недоволен.
- Будь мы вдвоем, я да Петр, - вскричал в сердцах Иван, я бы мигом разделил. Рассыпал бы зерно на две равные кучи и предложил бы Петру выбрать любую, а оставшуюся взял бы себе. Оба мы были бы довольны. А тут не знаю, как и быть. Задумались крестьяне, как же разделить зерно, чтоб все были довольны, чтоб каждый был уверен, что получил не меньше трети. И придумали. Придумайте и вы.
Ответ:
Иван предложил делить зерно так:
- Я рассыпаю зерно на три кучи, на мой взгляд, поровну и отхожу в сторону. Мне подойдет любая из куч. Пусть затем Петр укажет наименьшую, по его мнению, кучу зерна. Если Николай также посчитает, что зерна в этой куче меньше трети, то отдайте ее мне, а остаток зерна делите между собой известным уже способом. Если же Николай решит, что в указанной куче не меньше трети зерна, пусть возьмет ее себе. Петр возьмет наибольшую, по его мнению, кучу, а оставшаяся достанется мне. Крестьяне последовали предложению Ивана, разделили зерно и, довольные, разошлись.
Задача №12 Задача Диофанта.
Найдите три числа, которые при попарном сложении дают в сумме двадцать, тридцать и сорок.
Ответ: Числа 5, 15 и 25.
Задача №13 Ревнивые мужья. В старинном русском сборнике занимательных задач есть следующая: "Три ревнивых мужа, пришедши с женами своими к берегу реки, нашли при оном лодку, в которую по ее малости более двух человек вмещаться не могло. Почему спрашивается, как бы через реку переехать сим шести человекам так, чтобы ни одна жена с чужим мужем не переезжала и ни на котором берегу не оставалась"
Ответ:
Обозначим пары через Аа, Бб, Вв (маленькими буквами обозначим женщин). Вот схема перевозок, реализующая нужную переправу за 11 рейсов:
рейс |
берег левый |
в лодке |
берег правый |
1 |
Бб Вв |
Аа=> |
Аа |
2 |
А Бб Вв |
<=А |
а |
3 |
А Б В |
б в=> |
а б в |
4 |
Аа Б В |
<=а |
б в |
5 |
Аа |
Б В=> |
Бб Вв |
6 |
Аа Бб |
<=Бб |
Вв |
7 |
а б |
А Б=> |
А Б Вв |
8 |
а б в |
<=в |
А Б В |
9 |
а |
б в=> |
А Бб Вв |
10 |
а б |
<=б |
А Б Вв |
11 |
|
а б=> |
Аа Бб Вв |
Стрелки указывают направление движения лодки.
Задача №14 Задача о глубине озера
Задача взята из китайского трактата "Начала искусства вычисления", напечатанного в 1593г. и содержащего ряд статей и задач по арифметике, алгебре и геометрии, причем некоторые вопросы заимствованы из трактата "Арифметика в девяти главах".
ЗАДАЧА: В середине квадратного озера со стороной 10 фунтов растет тросник, выходящий из воды на 1 фут. Если нагнуть тросник, вершина достигнет берега. Как глубоко озеро?
ОТВЕТ: Глубина озера - 12 футов.
Задача №15 Задача из «Арифметики» Л.Ф. Магницкого:
"Некий человек нанял работника на год, обещал ему дать 12 руб. и кафтан. Но тот, отработав 7 месяцев, захотел уйти и просил достойной платы с кафтаном. Хозяин дал ему по достоинству расчет 5 р. и кафтан.
Спрашивается, а какой цены тот кафтан был?"
Алгебраическое решение задачи приводит к уравнению 7 • (x + 12):12 = x + 5, где x руб. — стоимость кафтана.
Арифметическое решение
работник не получил 12 – 5 = 7 (руб.) за 12 – 7 = 5 (месяцев),
поэтому за один месяц ему платили 7:5 = 1,4 (руб.),
а за 7 месяцев он получил 7 •1,4 = 9,8 (руб.),
тогда кафтан стоил 9,8 – 5 = 4,8 (руб.).
Задача №16 Задача из «Всеобщей арифметики» И. Ньютона:
"Мама раздала детям по четыре конфеты, и три конфеты остались лишними. А чтобы дать детям по пять конфет, двух конфет не хватает. Сколько было детей? "
Решение
1) Представим, что мама раздала детям по четыре конфеты. Сколько конфет у нее осталось? — 3. 2) Если она продолжит раздавать конфеты, то по сколько конфет она даст каждому? — По одной (5 – 4 = 1). 3)Скольким детям хватит еще по одной конфете? — Троим. 4) А скольким не хватит? — Двоим. 5) Сколько же было детей? — Пять (3 + 2 = 5).
Задачи из старинных русских рукописей
Задача № 17 На охоте
Пошел охотник на охоту с собакой. Идут они лесом, и вдруг собака увидела зайца. За сколько скачков собака догонит зайца, если расстояние от собаки до зайца равно 40 скачкам собаки и расстояние, которое пробегает собака за 5 скачков, заяц пробегает за 6 скачков? (В задаче подразумевается, что скачки делаются одновременно и зайцем, и собакой.)
Решение.
Если заяц сделает 6 скачков, то и собака сделает 6 скачков, но собака за 5 скачков из 6 пробегает то же расстояние, что и заяц за 6 скачков. Следовательно, за 6 скачков собака приблизится к зайцу на расстояние, равное одному своему скачку. Поскольку в начальный момент расстояние между зайцем и собакой было равно 40 скачкам собаки, то собака догонит зайца через 40ж6 = = 240 скачков.
Задача № 18.
12 человек несут 12 хлебов: каждый мужчина несет по 2 хлеба, женщина - по половине хлеба. А ребенок - по четверти хлеба. Сколько было мужчин, женщин и детей?
Решение:
Как могут распределиться 12 хлебов между мужчинами, женщинами и детьми. Попробуем мысленно распределить хлеба между ними. Сначала дадим всем по половине хлеба. При этом будет роздано 6 хлебов. Чтобы удовлетворить условию задачи, нужно раздать оставшиеся 6 хлебов мужчинам, а затем взять у каждого из детей по четверти хлеба и также распределить этот хлеб среди мужчин. Каждому мужчине до его нормы не хватает полтора хлеба. Шесть хлебов по полтора хлеба можно распределить между четырьмя мужчинами после чего каждый из них будет нести по два хлеба. Отсюда следует, что мужчин не менее пяти. Иначе излишки хлеба, имеющиеся у детей, некому было бы нести. Но если бы мужчин было шесть, то они сами несли бы весь хлеб, а женщинам и детям ничего бы не осталось. Итак, имеется всего пять мужчин. Пятому мужчине до его нормы не хватает полтора хлеба, и именно эти полтора хлеба нужно собрать по четверти. У каждого из детей. Так как полтора хлеба состоят из шести четвертей, то детей имеется всего шестеро и, значит, количество женщин равно 12—5 — 6=1, Следовательно, хлеба несли 5 мужчин, одна женщина и 6 детей.
Ответ:
5 мужчин, одна женщина и 6 детей.
|